
Investigating neuronal injury in a HIV cure strategy

Jasmini Alagaratnam Clinical Research Fellow Imperial College London

Why can't ART cure HIV? The viral reservoir

HIV reservoir sites

Research into HIV cure has intensified

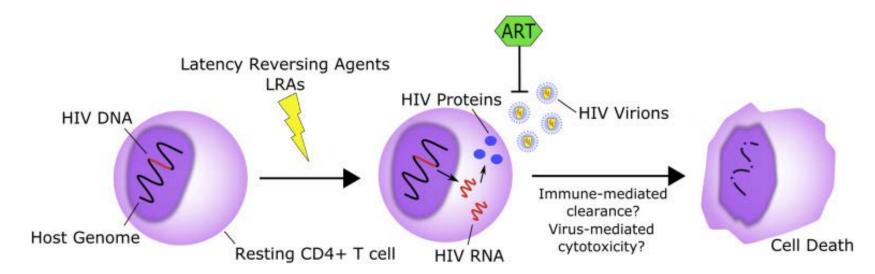
The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

Long-Term Control of HIV by CCR5 Delta32/ Delta32 Stem-Cell Transplantation

Gero Hütter, M.D., Daniel Nowak, M.D., Maximilian Mossner, B.S., Susanne Ganepola, M.D., Arne Müßig, M.D., Kristina Allers, Ph.D., Thomas Schneider, M.D., Ph.D., Jörg Hofmann, Ph.D., Claudia Kücherer, M.D., Olga Blau, M.D., Igor W. Blau, M.D., Wolf K. Hofmann, M.D., and Eckhard Thiel, M.D.

LETTER

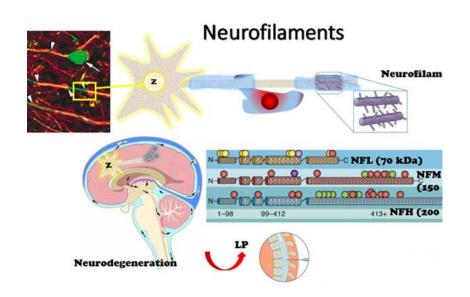

https://doi.org/10.1038/s41586-01

HIV-1 remission following CCR5 Δ 32/ Δ 32 haematopoietic stem-cell transplantation

 $Ravindra\ K.\ Gupta^{1,2,3,4,5*},\ Sultan\ Abdul-Jawad^1,\ Laura\ E.\ McCoy^1,\ Hoi\ Ping\ Mok^4,\ Dimitra\ Peppa^{3,6},\ Maria\ Salgado^7,\ Javier\ Martinez-Picado^{7,8,9},\ Monique\ Nijhuis^{10},\ Annemarie\ M.\ J.\ Wensing^{10},\ Helen\ Lee^{11},\ Paul\ Grant^{12},\ Eleni\ Nastouli^{12},\ Jonathan\ Lambert^{13},\ Matthew\ Pace^6,\ Fanny\ Salasc^4,\ Christopher\ Monit^1,\ Andrew\ J.\ Innes^{14,15},\ Luke\ Muir^1,\ Laura\ Waters^3,\ John\ Frater^{6,16},\ Andrew\ M.\ L.\ Lever^{4,17},\ Simon\ G.\ Edwards^3,\ Ian\ H.\ Gabriel^{14,15,18,19}\ \&\ Eduardo\ Olavarria^{14,15,19}$

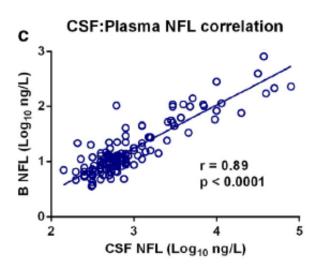
Data on the safety aspects of HIV cure strategies are limited¹

Kick and kill



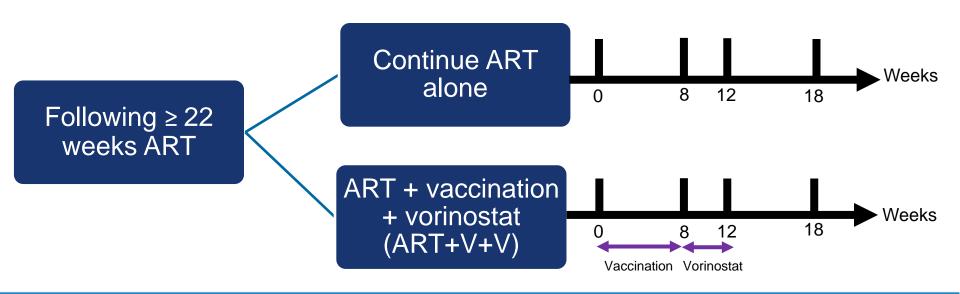
Potential CNS risks of 'kick and kill'

- Direct neuronal injury:
 - Viral rebound releasing viral proteins which are neurotoxic
 - LRA toxicities
- 2. Indirect neuronal injury:
 - CNS IRIS, CD8+ mediated encephalitis
 - Following HIV vaccines which may modify immune responses
 - Inflammation & immune activation
 - Following viral rebound or HIV vaccines
- 3. Removal of cells with crucial function
- 4. Reversal of other integrated viruses in a resting phase


CSF Neurofilament Light Chain protein (NFL)

- NFL maintains structure of axons
- Sensitive and dynamic biomarker of active neuroaxonal damage in the CNS
- Elevated concentrations are reported in a variety of neurodegenerative conditions including HIV

Plasma neurofilament light chain (NFL)


- Highly sensitive assay measuring plasma
 NFL has recently been developed
- Strongly correlates with CSF NFL
- Removes the barriers of repeated CSF sampling
- Allows more frequent measurements

Gisslen M et al, EBioMedicine 2015 Nov 22;3:135-140.

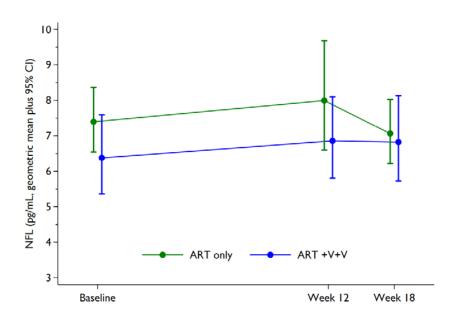
Investigating the impact of kick and kill on neuronal injury

Methods

Marker measured	Method	Timepoints		
		Week 0 (at randomisation, ≥22 weeks cART)	Week 12 (following completion vaccination and vorinostat)	Week 18
Plasma NFL	Simoa digital immunoassay	✓	✓	✓
Ultra-sensitive HIV RNA	Single-copy assay	✓	✓	✓

Statistical analyses:

- Differences between study arms at each time point
- Changes over time
- Correlations
- Associations with baseline clinical parameters



Results: Baseline demographics

Parameter, median (IQR) or total (%)	n = 58	
Age	32 (28 – 40)	
Ethnicity - White - Black - Asian or Hispanic - Mixed or Other	40 (69) 4 (7) 7 (12) 7 (12)	
Mode of HIV acquisition - Sex between men - Heterosexual sex - Unknown	53 (91) 2(3) 3(5)	
Weeks since PHI diagnosis	28 (27 – 37)	

Longitudinal changes in plasma NFL

No significant difference in plasma NFL by study arm

Study week		Week 0 (At randomisation)	Week 12 (Following completion of V+V)	Week 18
Plasma NFL, pg/mL ¹	ART	7.4 (6.5-8.4)	8.0 (6.6-9.7)	7.1 (6.2-8.0)
	ART+V+V	6.4 (5.4-7.6)	6.9 (5.8-8.1)	6.8 (5.7-8.1)
	<i>P</i> value	0.160	0.218	0.742
Ultra-sensitive HIV RNA, copies/mL ²	ART	16.5 (3 – 30)	9 (1 – 14)	5.5 (1 – 20)
	ART+V+V	13 (5 – 23)	5 (1 – 9)	6 (1 – 14)
	<i>P</i> value	0.56	0.21	0.81

¹ Geometric mean (95% CI)

² Median (IQR)

Plasma NFL: Correlations and associations

- Ultra-sensitive HIV RNA:
 - No sig. correlation with plasma NFL seen
- Baseline log_{10} plasma NFL was associated only with older age (0.01 increase per year of age, p = 0.004) in multivariate analyses
 - Not associated with ethnicity, duration from seroconversion, mode of HIV acquisition,
 CD4+ count

Conclusions

- Using plasma NFL as a surrogate marker, we saw no evidence of neuro-axonal injury following ART+V+V in the RIVER trial
- Possible reasons for the unchanged plasma NFL concentrations seen:
 - Lack of effect of the intervention on viral transcription in the plasma and on the HIV reservoir in circulating CD4+ T cells
 - Intervention may not have entered the CNS
 - Plasma NFL not sufficiently sensitive
 - Did not capture the neuronal injury episode (measured too early or too late)

Monitoring for CNS adverse events in HIV cure research remains important

6462d /240d 93ter

Imperial College London

Further results being presented at IAS, July 2019

- HIV-specific CD4+ and CD8+ T cell responses in RIVER
- Correlations with plasma NFL and HIV RNA
- Monday 22nd July: 12:30pm
- Abstract number: MOPEB274

Acknowledgements

All the RIVER study participants

RIVER Chief Investigator: Sarah Fidler

RIVER co-investigator and laboratory lead: John Frater RIVER statisticians: Abdel Babiker, Wolfgang Stöhr

RIVER laboratory investigators: Lucy Dorrell, Tom Hanke, Andrew Lever, Myra McClure, Steve Kaye, Matt Pace, Axel Fun, Mikaila Bandara, Maryam Khan, Andrew Lovell, HongBing Yang, Jakub Kopycinski, Natalia Olejniczak, Helen Brown, Nicola Robinson, Otto Erlwein, Alison Crook RIVER trial management team: Sarah Pett, Rachel Bennett, Michelle Gabriel, Fleur Hudson, Aminata Sy, Adam Gregory, Hanna Box, Cherry Kingsley, Katie Topping, Mary Rauchenberger, Yinka Sowunmi, Shaadi Shidfar, Dominic Hague, Gemma Wood, Charlotte Russell RIVER clinical investigators: Sarah Fidler, Sabine Kinloch, Sarah Pett, Julie Fox, Amanda Clarke, Mark Nelson, Margaret Johnson

RIVER Trial Steering Committee (TSC): Independent Members: Eric Sandström, Janet Darbyshire, Frank Post, Chris Conlon, Jane Anderson,

Mala Maini

RIVER Independent Data and Monitoring Committee (IDMC): Tim Peto, Peter Sasieni, Veronica Miller, Ian Weller

Community of people living with HIV: Simon Collins, Damian Kelly

CHERUB collaboration

Funders: BHIVA, MRC (MRL00528X1), NIHR Imperial BRC, NIHR Oxford BRC, NIHR Cambridge BRC

Industry partners: MSD, GSK

UK Dementia Research Institute, University College London: Henrik Zetterberg, Amanda Heslegrave, Jamie Toombs

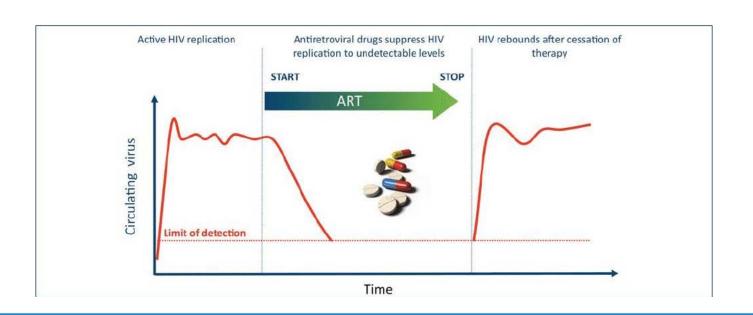
Thank you Questions?

Extra slides

Imperial College Clinically undetectable viraemia in the absence of ART London

Sterilising Cure

"INFECTIOUS DISEASE" MODEL


- The 'Berlin' patient
- Aviraemia; no transmission
- No replication competent virus
- No detectable HIV-infected cells

'Functional' Cure

"CANCER" MODEL

- No disease progression
- No CD4 cell loss
- No transmission
- But...no agreed duration

ART alone cannot cure HIV

HIV cure strategies currently being trialled:

Comments
Unlikely to be a global cure
rom 2 step approach d using
May need reservoir es stimulation for cure
Won't help those with chronic infection
que t

Adapted from Pace M, et al. Expert Rev Anti Infect Ther. 2014 Jul;12(7):783-91

CSF NFL

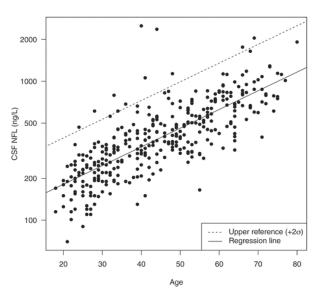


Figure 1: CSF NFL vs age in HIV-negative controls

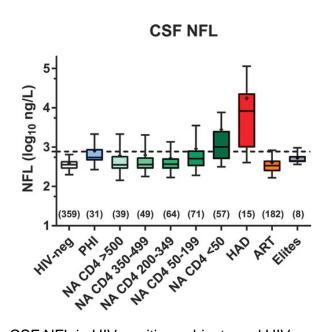


Figure 2: CSF NFL in HIV-positive subjects and HIV-negative controls